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Diagnosis, Conditioning and  

Regularization of Error Covariances 



Minimize with respect to initial state       : 

Optimal Bayesian Estimate 

The solution at the minimum,  xa , is the analysis. 
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1.  Observation Errors 1.  Observation Errors 



Observation Error Covariance Matrix 

•  Observation errors have been 

assumed to be uncorrelated in 

data assimilation. 
 

•  Observation errors in real data  

are found to be correlated. 
(Stewart et al, 2009, 2013;  Bormann et al, 2010; 

Waller et al, 2013, 2014a.) 

 

•  Using observation error 

correlations in data assimilation  

is shown to improve the state  

estimate.   
(Stewart et al, 2008, 2010, 2014;  Weston, 2014.) 

 

Observation Errors  



Observation Errors  

Four main sources of observation errors, which are time  

and spatially varying: 

Waller et al, 2014a; Stewart, 2014;  Hodyss & Nichols, 2014 



It is important to be able to account for observation 

error correlations: 

•  Avoids thinning (high resolution forecasting) 

•  More information content 

•  Better analysis accuracy 

•  Improved forecast skill scores 

Observation Errors  

Stewart et al, 2008, 2009, 2010, 2013, 2014;  Bormann et al, 2010; 

Waller et al, 2013, 2014a; Weston, 2014 



1.  Observation Errors       2.  Diagnosing Observation 

 Error Covariances 



DBCP Diagnostic  (Desroziers et al, 2005) 
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DBCP Diagnostic in Spectral Space 

Analysis of the diagnostic in spectral space, under some 

simplifying assumptions, shows that if the observation  

errors are correlated, then assuming in the assimilation 

that the correlation matrix is diagonal results in an estimate  

Re with: : 

•  underestimated observation error variances; 

•  underestimated observation error correlation length scales; 



DBCP Diagnostic in Spectral Space 

Analysis of the diagnostic in spectral space, under some 

simplifying assumptions, shows that if the observation  

errors are correlated, then assuming in the assimilation 

that the correlation matrix is diagonal results in an estimated  

Re with: 

•  underestimated observation error variances; 

•  underestimated observation error correlation length scales. 

But a better estimate of the observation error covariance  

matrix than an uncorrelated diagonal matrix. 

Waller et al, 2016a 



Summary:   DBCP Diagnostic 

The DBCP diagnostic has been successfully applied  

in operational systems to determine the observation error  

covariances for a variety of different observation types: 

including: 

-  Doppler radar wind data;  

-  atmospheric motion vectors;  

-  remotely sensed satellite data –  

    eg SEVIRI, IASI, AIRES, CRis and others   

Stewart et al, 2014; Waller et al, 2016b, 2016c; Cordoba et al, 2016.   



3.  Incorporating Correlated  

     Observation Errors in 

     Ensemble DA   

     



ETKF Filter    

Step 1  Use the full non-linear model to forecast each 

ensemble member from  xa
n-1  to  xf

n . 

Step 2  Calculate the ensemble mean  xf
n  and approximate 

covariance  matrix  Bn . 

Step 3  Using the ensemble mean at time  tn , calculate the 

innovation      n . 

Step 4  The ensemble mean is updated using 

               xa
n = xf

n  +  Kn n n n  

where the gain  Kn = ZnHn
TRn

-1 ≈ BnHn
T (HnBnHn

T +  Rn)
-1     

Livings et al, 2008 



Ensemble Filter with Diagnostic   

Procedure:  

•  Select initial R 

•  Run ETKF and store samples of db and da 

•  Compute  E[da dbT] 

•  Symmetrize (and regularize) to obtain new     

   estimate for R 

•  Repeat steps of ETKF using samples from   

   rolling window of length Ns to update R 

 

 

 

Waller et al, 2014a  



Example: 

Use high resolution Kuromoto-Sivashinsky model 

Add errors to observations from normal distribution 

with known SOAR covariance Rt.   

•  Assume incorrect RI = diagonal at t = 0.      

   Recover fixed true covariance.  

•  Allow length scale in true covariance to vary  

   slowly.  Recover time-varying true covariance. 

 

 

 

 



Results – Static Rt :     



Results – Time Varying Rt :    

: : 



Results –  Analysis Errors:    

Time averaged RMSE analysis errors: 

 Static True Rt  

• Experiment:  Exact Rt       0.246 

• Experiment:  R = RI  fixed   0.275 

• Experiment:  R updated    0.251 

 Time Varying True Rt      0.255 

 

Conclude:  the analysis is improved by incorporating the 

estimated observation error covariance in the DA 

 

 

 

 



Localization and DBCP Diagnostic  

Regularization of the matrix  Re   

is needed to ensure stability of the 

filter.  With domain localization, 

states are only updated using 

observations within a localization 

radius.   

Caveat:  Computing the DBCP diagnostic using samples 

from an ensemble filter with domain localization does  

not give the correct values of all the observation error 

covariances, even if all theoretical assumptions hold. 

Waller, Dance & Nichols, 2017 



Definitions: 



Definitions: 

The DD region is determined by  H .  The RI region is 

determined by F and depends on the radius of 

localization.     

F = H = 



Theorem: 

The correlation  Rij  between observations  yi  

and  yj  is determined correctly by the DBCP 

diagnostic  only if  the domain of dependence 

of  yi  lies within the region of influence of 

observation  yj .   

That is:  the (i, j) element of  H(F – BHT) = 0 .  

Waller, Dance & Nichols, 2017 



Summary : DBCP Diagnostic  

in Ensemble DA  

The DBCP diagnostic can be used with care to  

estimate the observation error correlation matrix   

R  in ensemble DA. 

 

In practice the diagnosed matrix  R  may be  

ill-conditioned and may need to be reconditioned. 

 

Accounting for the correlated errors in practice is  

a computational challenge, now being tackled.  



1.  Observation Errors 4.  Sensitivity of the Analysis  



Problems for DA: 

Diagnosed correlation matrices: 

• Non-symmetric 

• Variances too small 

• Not positive-definite 

• Very ill-conditioned    



Problems for DA: 

Diagnosed correlation matrices: 

• Non-symmetric 

• Variances too small 

• Not positive-definiite 

• Very ill-conditioned    

Aim:  to examine the sensitivity of the analysis to  

the conditioning of the estimated observation error  

covariances. 



Sensitivity of the analysis, is bounded in terms of the 

condition number  of: 

Sensitivity of the Analysis 

where         and         are covariance matrices with 

structures that depend on the variances and 

correlation length scales of the background and 

observation errors, respectively. 

S 



Sensitivity  

We can establish the following theorem: 

Haben et al, 2011; Haben 2011; Tabeart, 2016; Tabeart et al, 2018 



We can establish the following theorem: 

Note: the upper bound grows as                 grows and 

depends also on the observation operator.  

Haben et al, 2011; Haben 2011; Tabeart, 2016; Tabeart et al, 2018 

Sensitivity  



Sensitivity  

Key questions: 
 

•  What happens when we change the length scales of  

   R and B - separately?  together? 

•  What affect does the choice of observation operator    

   have? 

•  How does changing the minimum eigenvalue of  R   

   affect the conditioning of  S ?   Operationally?  



Example: 

We examine how the choice of operator and the length 

scales in  R  and  B  affect the sensitivity of the analysis.  

 

H1 H2 



(HT R-1 H) 

Example -  H1 : 



(HT R-1 H) 

Example -  H2 : 



Summary: Conditioning of the Problem 

We find that the condition number  of  S  increases  as: 

• the observations become more accurate  

• the observation length scales increase  

• the prior (background) becomes less accurate  

• the prior error correlation length scales increase 

• the observation error covariance becomes  

  ill-conditioned -  ie when            . becomes large 
 

Haben et al, 2011; Haben 2011; Tabeart, 2016; Tabeart et al, 2018 



5.  Regularization   



Reconditioning R 

To improve the conditioning of  R  (and  S ) we alter  

the eigenstructure of  R so as to obtain a specified 

condition number for the modified covariance matrix by: 

•  Ridge regression (RR):  add constant to all diagonal  

   elements to achieve given condition number. 

•  Eigenvalue modification (ME):  increase the smallest  

   eigenvalues of R to a threshold value to achieve the  

   given condition number, keeping the rest unchanged. 



Theoretical Results: 

  

•  Both methods reduce the condition number of R. 

•  Both methods increase all the standard deviations,  

   but ridge regression creates a larger increase than  

   does the eigenvalue modification method.  

•  Ridge regression decreases the moduli of all the  

   cross-correlations. 

•  The eigenvalue modification method is equivalent 

    to minimizing the KyFan 1-p (trace) norm of the  

    distance to the nearest covariance matrix with   

    condition number less or equal to a given value κmax .                            

Tabeart et al, 2018 



Example: 

Given a covariance matrix, constructed by sampling a SOAR  

correlation function, with condition number 81121 and fixing  

the variances to be constant.  Recondition using RR and ME. 



Example: 

Given a covariance matrix, constructed by sampling a SOAR  

correlation function, with condition number 81121 and fixing  

the variances to be constant.  Recondition using RR and ME. 

 

RR =  red solid,  ME= blue dashed,  Original = black solid 



Operational Tests -  Met Office 

•  Aim to test qualitative conclusions in an operational    

   system. 

•  Focus on observations from IASI (Infrared  

   Atmospheric Sounding Interferometer) instrument  

   (on MetOp-A satellite). Note the observation operator    

   is non-linear in this case. 

•  Investigate how changing the minimum eigenvalue of  

   R affects the condition number of  S  -  we only show  

   results using the ridge regression method. 

Experiments using the Met Office 1D satellite retrieval system 



 Results - 1: 



 Results - 2 

Shown are the retrieved temperature and humidity profiles for  

4 different choices of R: Roper, Runpre, R500 and R67. 



Summary: Regularization 

•  Developed theory on reconditioning of the matrix R. 

•  Theory tested in a twin experiment  –  showing effect  

   of ridge regression and eigenvalue modfication on  

   standard deviations and correlations of the modified  

   covariance matrices. 

•  Operationally standard deviations of the diagnosed 

   matrices are increased by the reconditioning .  The  

   impact on temperature retrievals was minimal, but the  

   impact on humidity retrievals much larger. 

  Tabeart, 2016;  Tabeart et al, 2018b 



1.  Observation Errors 6.  Conclusions 



Conclusions 

Ensemble DA allows the statistical estimation of the  

background and observation covariance matrices from  

sampled states. 

In practice the diagnosed matrices  are commonly  

singular or very ill-conditioned.   Regularization is  

required to ensure the stability of the filter. 

A variety of techniques are available, including  

localization and reconditioning. A combination of these  

two approaches have been applied to an 4DEnVar  

simplified system and shown to be of benefit. 

Smith et al, 2017 



   

 

 

Many more challenges left!  
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